Announcement
- HW2 graded (total 150 points). Feedback:
- Exercise 9.7. If $Ax=b$ consistent, show $(A+uv’)x=b$ is consistent whenever $v \notin \mathcal{R}(A)$. Hint: use rank factorization of $A$.
Feel free to re-do problems and submit with HW3.
- Exercise 9.7. If $Ax=b$ consistent, show $(A+uv’)x=b$ is consistent whenever $v \notin \mathcal{R}(A)$. Hint: use rank factorization of $A$.
- HW3 due Nov 7 in class.
Today
- eigenvalues and eigenvectors (cont’d), positive definite matrices, SVD.